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ABSTRACT

The interpretation of viscous effects in perturbations of rapid, solid-

body rotation of a fluid in a cylindrical gyroscope is discussed. This is

bound up with the explanation of the roots of those effects and aims to

improve the foundation on which more sophisticated questions in this field can

be addressed successfully. To help with the clarification of viscous

displacement effects, their explanation in Section 3 is prefaced by a

discussion of two examples displaying some of the salient features in a

simpler setting.
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SIGNIFICANCE AND EXPLANATION

A number of technical devices, such as some governors, navigational
instruments and projectiles, for example, employ liquid-filled gyroscopes. It
has long been known that the motion of the liquid can upset the operation of
such a device by means of the forces and moments exerted by the liquid on its
solid container. That fact has prompted studies of the possible perturbations
of the motion which the fluid is meant to perform in unison with its
container, first of all under conditions in which the contributions to the
forces and moments arising from the viscosity of the fluid can be expected to
be small in relative magnitude.

A gyroscope, however, is an intricate dynamical mechanism that can react
in rather startling ways to quite small moments, if those are out of step with
the strong, stabilizing influence of the spin. Analysis of the viscous
effects shows that they can act out of step with the main fluid motions and
therefore require more attention than their magnitude would appear to justify.

The following notes respond to a request for a clarification of some
rather complicated, conceptual issues that arise in the analysis of 'small'
viscous effects even in the case where the container is a cylinder in steady
rotation and the fluid moves almost in unison with it. The request reflects a
realization that a clearer understanding of the issues in this simplest case
is needed as a basis for fruitful thought about the still trickier issues
arising for different modes of operation and for different container shapes of
practical importance for such devices.

To divide the difficulties, the response is made in three stages, of
which the last addresses the viscous effects localized near the end-walls of a
spinning cylinder. The first two Sections serve to introduce some of the
salient issues in the much simpler setting of two examples involving
oscillation, but no rotation.
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NOTE OR THE DISPLACEMENT EFFECT IN A SPINNING FLUID

R. E. Meyer

1. First Example

Envisage an unbounded fluid resting on a horizontal plate z - 0 which oscillates in

its own plant. The fluid is incompressible and Newtonian, so viscous shear will transmit

motion from the plate to the fluid, but that fluid motion can be expected to decay with

increasing distance z from the plate.

z w

u

7/1/ / ///////////
- x

UP cosWt

Since no origin of the horizontal coordinates is distinguishable in the plane of the

plate, the fluid velocity cannot depend on the coordinates x,y. The plate is envisaged

to be in rectilinear oscillation, so that every point of it has velocity

U cost - Re{U e i~
t

p p

in the x-direction, say, with real constant velocity Up and real constant frequency w.

.4 -Nobody blows from far away, so by symmetry, the fluid can have no horizontal velocity

component perpendicular to the x,z-plane of Fig. 1. The mass-conservation equation,

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041.
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div - 0, reduces exactly to 8w/3z a 0 because nothing depends on x and y. But on

the plate (envisaged impermeable), w - 0, so

w E 0

In the incompressible Navier-Stokes equations, most terms are now seen to vanish

identically, leaving only

2 2
au/at - va2u/3z 2  (1)

where v is the kinematic viscosity. The boundary conditions are

u-Ue at z-0
p (2)

u+0 at z + •

Initial conditions are not here considered, because the simplest question of interest

concerns the motion of permanent character that could develop ultimately. The familiar

development variable z 2/(4vt) is not then relevanty instead, the boundary conditions (2)

show that permanent character is possible only with a motion periodic in time, and the

linearity of (1), (2) precludes any nontrivial solution of frequency other than W.

iWt
Rence, u/C can depend only on z. But, the problem has no reference length other

1/2than (v/w) , so the motion can depend only on the nondimensional distance

1/2z (w/2v) T 1 (3)

and the velocity must have the form

iWt
u(z,t) - U f(rI)e . (4)

p

Substitution of (4) into (1) yields

2if - f"

and the boundary conditions (2) show that

f- (1+i)nlf - I (5)

Ue 1co(Wt-1)
u - up Re{e~n i ' )

u-ti Re~e(6)- U e-n cos(Wt - TO

p

This exact solution of the Navier-Stokes equations is due to Stokes (1851). It

illustrates two very typical features of oscillatory or rotating boundary layers. The

first is the appearance of a complex exponent in (5). Its real part is not unexpected as

------ -
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a description of the amplitude decay of the fluid oscillation with increasing distance

from the plate. The imaginary part is seen from (6) to represent a phase lag of the fluid

oscillation, relative to the plate oscillation, which increases in proportion to the

distance from the plate. Such phase delay in the fluid oscillation turns out to be a very

typical manifestation of the viscous diffusion of vorticity in oscillating or rotating

boundary layers.

The second feature typical of boundary layers caused primarily by oscillation or

rotation is the length scale

(2v/W) 1
/2 -

characteristic of boundary layer structure in the direction normal to the wall. It is the

basic boundary layer thickness because any specific choice of a definition of such

thickness must clearly yield just a numerical multiple of 5.

On the other hand, Stokes' very simple solution is atypical in that here the normal

velocity w vanishes identically throughout the fluid. Accordingly, no definite

displacement thickness can be defined, nor any rational "boundary layer thickness" other

than 5.

1-4 -3-
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2. Second Example

For an illustration of further, typical features in the simplest setting, envisage

now the same qeometry, but with the plate fixed (and still impermeable), while a distant

contraption imparts a sloshing motion to the fluid. It is natural to expect such a motion

to be non-uniform in space, but if the contraption is long in one direction, the motion

should retain essentially the symmetry which makes the velocity independent of the y-

coordinate and makes the y-component of velocity vanish everywhere. For present purposes,

the sloshing motion can then he specified adequately by saying that, if the fluid were

inviscid, its x-velocity at the plate would be

Ue(x,t) - Us uo(x/d) coswt (7)

with constant, real frequency w, velocity-amplitude scale Us, and length scale d

related to a dimension of the distant contraption or the large tank holding the fluid.

For a brief remark, suppose the fluid were inviscid, then the mass-conservation

equation

u/ax + aw/az-0 (8)

implies already that w X 0, and by (7), there must be a vertical velocity

We = -(Ua/d) uV(x/d) (a + c) coswt (9)

close to the plate. The integration 'constant' c(x,t) is zero if the boundary

condition w = 0 at the plate be imposed on this inviscid motion, but our interest in a

real fluid suggests a postponement of this step until more is learned about the structure

of the transition to the no-slip boundary condition.

ven for an inviscid fluid, however, the specification (7) already implies definition

of a non-dimensional velocity ratio

U /(wd) - R
5

called Rosby number in Geophysics. In the present context, it is natural to think of

1d as a 'large' length scale, and if the frequency w is 'not small', then the Possby

number should have a small value.

-4-
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For a Newtonian fluid, an additional, nondimensional Ekman number

v/(lud
2 ) 

= B

appears, which will take even much smaller values when the viscosity is 'small', so that

the Reynolds number

Re = U d/v - Ro/E
8

is then large.

A rational way to formulate the second example nondimensionally is to measure
-1

horizontal velocity u in units of Us, time in units of W , and horizontal

distance x in units of d, as in (7), but vertical distance z again in units of

8 = (2v/w) I/2  to clarify the transition from the sloshing motion to no-slip on the

plate. Mass-conservation (8) then implies that vertical velocity w must be measured in

units of U 6/d, as usually in boundary layers. The proper unit of pressure, by

contrast, is not so straightforward. The first example confirmed the plausible

expectation that oscillation, per se, does not generate spatial pressure gradients, and if

they occur,they must therefore relate to those of the sloshing, which can be estimated in

a limit n + f. z + 0. That limit can be taken so as to be governed plausibly by inviscid

equations, of which the x-momentum conservation law is

au/at + ueu/ax + w Bu /az - -p-1 pe/axa e e ee

in the dimensional notation of (7) and (9). From those two equations, ue Uu 0 exp(iot)

and we + -U c(u 0/x)exp(iwt) as n ' -, but z * 0, and accordingly,

-e U iotfi + u0  c 3u0  1eimt(
x a x 3(x/d) 0 d d(z/d) .(10)

(For just a passing moment, uo is here admitted to depend also on z.] For consistency

with the scaling of vertical velocity w just deduced from mass conservation, moreover,

the constant c, if nonzero, must scale with 6. Since present interest centers on casesjl
where R and 8/d are not at all large, the proper unit of pressure p is seen to be

pwdU"
a



If all the variables are now made nondimensional by reference to the units just

specified, the mass-conservation equation (8) remains unchanged and the momentum-

conservation equations of a Newtonian fluid take the form

-£ t 
u + I1 32uax ar ) a. ax x2 2 awl2

2 +. (11)

3w 13w
U + RD(u -- . (12)

The parameters Ro and 9 are seen to play quite different roles. For 'small viscosity'

or high frequency, I + 0 and then (11) assumes boundary layer character and (12) shows

vertical pressure variation across the boundary layer to be negligible, as usually, so

that p - p(x,t), which is predictable from the limit n * -, z + 0, i.e., from the non-

dimensional form of (10),

- U (uje 
+ 

Ro u6(x)(u0 + O(E1,2)]e
2
it (13)

where ue  and u0  match the notation in (7), (9).

Comparison of (13) and (10) clarifies why the verical variation of the sloshing

velocity plays no role in the small-Rkman limit: that variation is on the length scale

d and the analysis of the boundary layer is concerned with variations on the length scale

6 - (2Z)1/2d, on which the sloshing appears independent of x and z. This explains

why the specification (7) of the limit z + 0 of the sloshing velocity turns out

sufficient for the analysis of the boundary-layer transition. Furthermore, the x-

dependence of the transition becomes a parametric effect: the transition depends only on

the local values of ue and u /3x.

For small fl:ssby number Re - U /(Wd), moreover, a first approximation to the

* Iboundary layer structure is now seen to be obtainable from a linear truncation of (11),

o-6-
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uu/t / u /U t U/3n2, (14)
S * 2

almost as simple as Stokes' equation (1) for the first example. The boundary conditions

for it appropriate to the description of a transition from the sloshing (7) as n ,

but z + 0, to no-slip at the plate n - 0 are

u 0 for n f 0
(15)

u Ue/Us . uo(x)eit as n

for all x,t0

The linearity of (14), (15) again rules out any frequency other than W and in fact,

makes u/ua independent of x and t, so that

U su(x,n,t)/u e(x,t) -e-t u(x,n,t)/u 0 (x) " 9

can depend only on n and must satisfy

g" - 2i(g - 1), q(O) 0 0, g(n) + 1 as n 0

whence g- 1 - "(1+i)n and

u - uO(x)eit(1 - e - 11+i)n) (16)

Thus, [1 - g(n)]u - us - U u exhibits the same diffusive decay and phase lag as f( i)e

in (S).

The object of the second example is the interpretation of the vertical velocity w,

which is now determined by (8) and the boundary condition w - 0 at the impermeable plate

n -0, so that

w(x,n,t) - - f u6 e'tf , g('I)dn'

it I 2-1/2e-n-i (TI/4)

-u(x) e [71 - -- 
+ 

2 (17)

An initially disturbing feature here is the first term, which grows beyond bounds as

n * -, but actually, the first two righthand terms in (17) can be recognized as

precisely the nondimensional form of (9). The last term describes an internal boundary

layer effect, which decays and lags diffusively with increasing distance from the wall,

and w is seen to trail u by another w/4 in phase.

r4



The most interesting term in the bracket of (17) is the second, because it describes

a boundary layer effect which persists as n + - and even, for z > 0 outside the

boundary layer. It describes a contribution to the vertical velocity which is independent

of distance from the plate, but oscillary in time, and not in phase with the sloshing

velocity ue . In the efficient, complex notation of (17), it is accordingly represented

by a complex multiple u6(x)/(1 + i) of exp(it), of which the n-independence connotes

persistence beyond the boundary layer, the modulus describes amplitude, and the argument

specifies phase difference.

It should be observed in retrospect that everything that has ' i said here about the

vertical velocity sprang directly from the mass-conservation equ, ,n (8). The proper,

physical interpretation of the effect under discussion is theref, in terms of a mass-

flow contribution to the sloshing motion arising from the viscou iion of vorticity

close to the plate. This is the interpretation which goes to the ...art of the matter.

On the other hand, if one desires to be done with boundary layer details and to look

only at their resultant effect in terms of a corrected 'inviscid' description of the

sloshing motion, then the last term in (17) becomes immaterial and that equation reduces

to

w - -(U /d)uo(x/d)e [z - 8/(1 + i)] (18)

in dimensional, but still complex, notation. As already noted, that is the complex

version of (9), and there are two alternative, simple interpretations. A kinematical one

is that the plate z = 0 appears porous to the 'inviscid eye' with an oscillatory suction

velocity. That suction velocity is proportional to the limit of 
3
we/

3
z as z + 0 and

it therefore shares the spatial structure of we .  Its temporal structure is different,

however, because the factor of -w /3z is 2-1/26 exp(-iw/4)1 it lags behind -w e  by

.-4 W/(40).

A more comon, kinematic-geometrical interpretation is in terms of the displacement

thickness 1 introduced by Prandtl, probably in response to early audiences sceptical of

his novel and controversial notions and particularly, in response to their demand for a

__ _ _ __ _ _ _ __ -- - -----
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concrete explanation of his order-of-magnitude concept of boundary-layer thickness. The

displacement thickness is defined as the distance z - 61 from the geometrical plate

position at which the corrected 'inviscid' description (18) of the Newtonian fluid motion

satisfies the classical wall-condition w - 0. Hence,

61 - 6/(1 + i) = (2V/w) 1/2/(1 + i) 1 (V/W) 1/2 e-i/4 (19)

by (18), and this displacement thickness is complex because it characterizes a viscous

mass-flow contribution that is out of phase with the main sloshing motion.

It will be clear enough that this is just a simple example of a mass-flow effect

characteristic of oscillating or rotating boundary layers. Of course, it is a small

contribution when 6/d - (2E)1 /2  is a very small number, but 'small' must depend on the

practical question at issue. Some issues, such as stability limits, are notoriously

sensitive to phase relations, and the 'small' viscous mass-flow contribution is then

important because it is the one and only part of the Newtonian motion outside the boundary

layer that is out of phase with the imposed sloshing (7).

It may be remarked finally that the real part of (16) and (17) is

u . ue(x,t) - U U (x/d)e -/bcos(Wt - z/6) ,

U 1/2 w 1/2 /6
W al)f o t + () cos(Wt + + H) e coa(Wt-
d d 4) ,

1/26 - (2v/w)

and illustrates why calculations prefer to aim at its simpler, complex version (19). In

the real version, the definition of 6 makes 6 - -c, which fluctuates between

"4 positive and negative values.

That c turns out independent of x is seen in retrospect to have two reasons:

First, the analysis of the transition to no-slip concerns only the very local dynamics, in

the limit 3 + 0, and is influenced only parametrically by the x-dependence of the

sloshing, so thtue(x,0,t) ad-au e/ax a (x,0,t) beoeterespective scale-

constants of the horizontal velocity and vertical velocity gradient for the local

-9-
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dynamics. Secondly, the linearity of the limit No* 0 makes the velocity components

directly proportional to their acale by muppressinq nonlinear interactions, it

eliminate, the more complicated structure of the harmonics of the slouhing frequency 0

from consideration.

It may also be worth repetition that the two small parameters No and 2 are seen

to play quite different roles in the analysis. A double-limit ft + 0, Z + 0 arisen,

and no consideration has been given to the manner in which an experiment might approach

it. Instead, the choice has been made to let Do + 0 first and then look at (11), (12)

for Rb 0 and Z << 1. The same, somewhat arbitrary choice is repeated in what

follows.

I -10-



3. Ukman lAyer in a Cylinder

A question of practical mportance concerns the perturbations of solid-body rotation

of a fluid in a spinning and nutating cylinder, because of the oscillating forces and

moments which the fluid may exert on its container. The following focuses on the boundary

layers on the end-walls of the cylinder, because the obvious fact that they make a very

small contribution to the perturbations at small Ekman numbers can be misleading: As in

the preceding examples, viscous diffusion of momentum is associated with a delay, in which

case the viscous contribution to the perturbations may be out of phase with the 'main'

fluid oscillations and a comparison of magnitudes may be pointless in regard to questions

for which phase relationships are decisive. The objective of the dicussion will be to

clarify why this raises issues which are more complicated than, but in their decisive

features, closely analogous to, those just discussed for the second example.

Envisage, then, a cylinder of radius a spinning with angular velocity 0 about the

z-axis and filled with fluid above the plane end-wall z = 0. For the study of the

stability of solid rotation, it is convenient to refer the motion to cylindrical polar

coordinates r,O,z in the frame of an observer rotating with the cylinder, who sees only

the perturbation from the solid rotation, but also, a Coriolis acceleration. He can

absorb the centrifugal force by counting as his pressure p the difference between the
1 2

real pressure and the centrifugal contribution I p 2r
2 

+ const to it.

It is basic for stability analysis to consider velocity perturbations of scale U5

small compared with the velocity Sla of the cylinder (and such that the space gradient of

velocity has only the scale U /a and the time-rate of change of velocity, only the scale

nU in short, there is a Rosaby number Ro - U I and to that extent, the

motion is "geostrophic" and a straightforward application of the limit Ro + 0 will again

linearize the equations of motion and will thereby ignore interactions between

harmonics. That offers an opportunity for a relatively simple, modal analysis by

separation of all the variables so that the resultant velocity field is the real part of

-~ -11-
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u ] u(r)cos kz

v5  -;(r)coe k. ei(Ct- me) (20)

w I w(r)sin kz

where r,z are made nondimensional by reference to a and t, by reference to A-

and the velocity components are measured in units of Usa.  [It is assumed, for simplicity,

that the height and diameter of the cylinder do not differ so much that their ratio

introduces an additional small parameter.] The dependence on z is left real to display

that the modal analysis is inviscid to the extent of recognizing the impermeability of the

wall x - 0, but ignoring the no-slip condition there.

In (20), m is integer and C is the nondimensional, complex frequency of the

perturbation, and it should be remarked briefly that the analysis in the frame of a

laboratory - fixed observer differs only in the interpretation of that frequency. For

that observer, the phase is constant when e increases at an additional unit rate, so

that his exponent in (20) is i(C + m)t - ime in the present notation.

The Newtonian fluid, however, has also an Rkman number

2
E -V/(a a)

and when that is small, all experience [Greenspan 1968] indicates that the transition to

no-slip occurs again in an Zkman layer of thickness scale

6 - (2V/n)
1/2 

- a (2E)
1/ 2

To study that transition, requires again consideration of the limit

z * 0, 2 + 0 for fixed n - z/6 e (0,-) . (21)

Mass-conservation shows, as in the second example, that the corresponding, vertical

velocity w must be measured in units 6U /a - U (2E)1/2. The issues raised by the
vel it

' 1pressure scale are entirely analogous to those arising in the second example: the same

-4 argument shows the scale of p to be pfaU . With these scale revisions, the Navier-

Stokes equations assume boundary layer character, and the vertical momentum equation shows

that pressure differences in the vertical direction within the Nkman layer can be only

O(R). The limit (21) of the pressure perturbation is therefore that at z = 0 in the

-12-



inviscid modal analysis leading to (20), i.e.,

-ap/ar - O[au /3t - 2v + O(Ro)
z-0

(22)

-r- IBp/3 - P[3v /at + 2ue] + OHo)

z-O

with horizontal velocity components u,v still measured in units of Us, the

limit Ro + 0 linearizes the conservation equations for horizontal momentum and the limit

(21) then reduces them to

au/3t - 2v - -p- lap/ar + - a2u/a2
2

8v/Bt + 2u - -p-
1 r- lp/e + _ 2v/2 (23

2

where the pressure gradient is given by (22) and hence, depends only on r,O and t. The

transition equations for

u - U (r,9,0,t) = u and v - v (r,O,O,t) = v

are therefore the typical, simple Rkman equations of geostrophic theory,

3u1t - 2; - 2. a./a. 2

ay/at Zu -. a 2/2 (24)

2

with boundary conditions

u S +u v + V -V - 0 at n- 0,
• • (25)

u,v both - 0 as n1+ , but z + 0

These show again that the Rkman transition depends on r and 0 only parametrically

through the effective, local scales ue  and ve of the linear system (24), (25).

However, u and v are not directly proportional to ue and ve , respectively, because

of the Coriolis coupling in (24). Instead,

B(u _ i;)/Ot ± 2i1G ± iv) a 2u ± i7v)/T2

and the boundary conditions show

u ± iv - (us t ive )[ - exp(l n)] (26)

with

~2 2
A- 2i(C + 2), -2i(C -2)

-13-
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and X + I- understood as the roots of negative real part -- which are well-defined,

unless both Re C - T 2 and ra C ) 0, and that exceptional case will not be considered

here.

rn sum, the Coriolis-coupling is left intact by the geostrophic limit Me - 0, and

this gives a much more complicated structure to the transition from no-slip to the

horizontal velocity (ueoVe) of the modal analysis at z - 0. Bach of u and v has

two contributions to the transition, one of local scale Us%, the other, of local

scale Uv, . Each contribution, moreover, displays a double structure, one of boundary

layer thickness 6/A+ and the other, of thickness 6/X.. The difference in the

thicknesses, moreover, is accompanied by a difference in diffusive phase lag. All the

same, the transition shares with that of the second example the feature that it is

complete for u and v, i.e., no contribution of order 31/2 to either is left as

n # 0. A mss-flow effect of that order, however, appears as possible here ae in the

second example, and should show up in the normal velocity w.

Substitution of (26) into the mass-conservation equation

37 (r) +J + r W 0 (27)

gives

ax" + . (e + e )J + l- ( e (2)

in the limit (21), where C stands for

Su
133U

Ce r (re)" - Jr3 • (29)

which in the a-component of (perturbation) vorticity. The Coriolis-coupling is seen from

(28) to generate also two distinct contributions to w, one of the scale Vewe, just as

.4
in the second example, but the other, of scale a times the normal component of the

perturbation vorticity. The generation of such vorticity by the Coriolis effect is, of

course, a well-known geophysical phenomenon.

-14-
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Since aw /am and C take their values at m - 0 in the limit (21), the first5 C

approximation to the value of w as n + -, but z << 1 is found from (28) by

integration to be

1 -1 1 -16ZI. 0 ) . (30)
v - 2 2 - A -)H(O,, + i(

and this represents the part of the normal velocity which persists beyond the boundary

layer.

Now, the analysis of the Ikman boundary layer is tailored to the premise that the

subscript e distinguishes quantities varying on the scales 0- 1, a and Us

characteristic of time, distance and velocity, respectively, of the core-flow outside the

boundary layers on the solid walls and outside that region around the rim of the end-walls

in which those boundary layers meet. Variation on those scales implies that the (first

approximation to the) equations governing the core-flow are the limit Ro - 3 - 0 of (11)

and (12). In the cylindrical coordinates of the rotating observer, those governing

equations are (27) and

au /Dt - 2v - -ap /3r

0 a 5

av /at + 2U4 - -r- ap /a8

awe/at - -p -- /

and the velocities (20) in the core-flow are effectively computed from them. Cross-

differentiation to eliminate the pressure from the first two of that equation-trio yields

8(re )/at = 2raw /3z

by (29) and (27), and since the time-factor of C is also exp(iCt), by (29) and (20),

i - (2/C)3w e/az

and (30) simplifies to
1 1 -1 -1 - 1 .- 1

W 2 - -" 6(0 + X) + 8C1(X - )] /aZ, (31)
2 + - + - -

This has again the two interpretations noted in the second example. The purely

kinematical one is that the main effect of the and-wall transition on the core-flow is to

make it look as if there ware a small, very judicious amount of blowing and sucking,

w- w -- (awe/3a)x0 [1 (A+ + X + C (A-1 A+),

-15-
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through the wall a 0 0, which shares the spatial structure of we, but differs in phase

by, essentially, the argument of the complex-valued square bracket. The more geometrical

interpretation of (31) is of a wall displaced to the value z = 8 at which the normal

velocity (31) vanishes, which is

a-_ /)12 1 - I - -I
I ' + A- ) + (2/C)0( - XL )

as first determined by Kitchens, Gerber and Sedney [1978). This coordinate z - 1 is

complex because it is the geometric interpretation of a mass-flow from the end-wall

boundary layer that is out of phase with the core-flow structure of a purely inviscid

fluid. That phase-difference, in turn is the reason why the mass-flow contribution from

the viscous vorticity-diffusion influences eiqenvalues to an extent out of proportion to

its small magnitude.

il
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